Copied to
clipboard

G = C2×C322D9order 324 = 22·34

Direct product of C2 and C322D9

direct product, non-abelian, supersoluble, monomial

Aliases: C2×C322D9, C323D18, C33.4D6, (C3×C6)⋊2D9, (C3×C9)⋊8D6, (C3×C18)⋊4S3, C6.7(C9⋊S3), C32⋊C94C22, (C32×C6).6S3, C6.6(He3⋊C2), C3.3(C2×C9⋊S3), (C2×C32⋊C9)⋊3C2, (C3×C6).18(C3⋊S3), C32.10(C2×C3⋊S3), C3.1(C2×He3⋊C2), SmallGroup(324,75)

Series: Derived Chief Lower central Upper central

C1C3C32⋊C9 — C2×C322D9
C1C3C32C33C32⋊C9C322D9 — C2×C322D9
C32⋊C9 — C2×C322D9
C1C6

Generators and relations for C2×C322D9
 G = < a,b,c,d,e | a2=b3=c3=d9=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe=b-1c, cd=dc, ce=ec, ede=d-1 >

Subgroups: 535 in 99 conjugacy classes, 27 normal (13 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, C32, C32, D6, C2×C6, D9, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3×C9, C33, D18, S3×C6, C2×C3⋊S3, C3×D9, C3×C18, C3×C3⋊S3, C32×C6, C32⋊C9, C6×D9, C6×C3⋊S3, C322D9, C2×C32⋊C9, C2×C322D9
Quotients: C1, C2, C22, S3, D6, D9, C3⋊S3, D18, C2×C3⋊S3, C9⋊S3, He3⋊C2, C2×C9⋊S3, C2×He3⋊C2, C322D9, C2×C322D9

Smallest permutation representation of C2×C322D9
On 36 points
Generators in S36
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(20 23 26)(21 27 24)(29 32 35)(30 36 33)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 30)(2 29)(3 28)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 25)(11 24)(12 23)(13 22)(14 21)(15 20)(16 19)(17 27)(18 26)

G:=sub<Sym(36)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(20,23,26)(21,27,24)(29,32,35)(30,36,33), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,30)(2,29)(3,28)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,25)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19)(17,27)(18,26)>;

G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(20,23,26)(21,27,24)(29,32,35)(30,36,33), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,30)(2,29)(3,28)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,25)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19)(17,27)(18,26) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(20,23,26),(21,27,24),(29,32,35),(30,36,33)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,30),(2,29),(3,28),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,25),(11,24),(12,23),(13,22),(14,21),(15,20),(16,19),(17,27),(18,26)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F3G3H6A6B6C6D6E6F6G6H6I6J6K6L9A···9I18A···18I
order1222333333336666666666669···918···18
size1127271122266611222666272727276···66···6

42 irreducible representations

dim1112222223366
type+++++++++
imageC1C2C2S3S3D6D6D9D18He3⋊C2C2×He3⋊C2C322D9C2×C322D9
kernelC2×C322D9C322D9C2×C32⋊C9C3×C18C32×C6C3×C9C33C3×C6C32C6C3C2C1
# reps1213131994422

Matrix representation of C2×C322D9 in GL5(𝔽19)

180000
018000
00100
00010
00001
,
1015000
48000
0018618
00010
00100
,
10000
01000
001100
000110
000011
,
1810000
94000
00100
001877
000011
,
1015000
19000
001800
0011212
007157

G:=sub<GL(5,GF(19))| [18,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[10,4,0,0,0,15,8,0,0,0,0,0,18,0,1,0,0,6,1,0,0,0,18,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,11,0,0,0,0,0,11],[18,9,0,0,0,10,4,0,0,0,0,0,1,18,0,0,0,0,7,0,0,0,0,7,11],[10,1,0,0,0,15,9,0,0,0,0,0,18,1,7,0,0,0,12,15,0,0,0,12,7] >;

C2×C322D9 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes_2D_9
% in TeX

G:=Group("C2xC3^2:2D9");
// GroupNames label

G:=SmallGroup(324,75);
// by ID

G=gap.SmallGroup(324,75);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,794,338,579,735,2164]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1*c,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽